Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

(5,16-Dimethyl-2,6,13,17-tetraazatricyclo[14.4.0 $\left.0^{1,18} .0^{7,12}\right]$ docosane- $\kappa^{4} N$)-bis(perchlorato- κ O)copper(II)

Jong-Ha Choi, ${ }^{\text {a* }}$ Keon Sang Ryoo ${ }^{\text {a }}$ and Ki-Min Park ${ }^{\text {b }}$

${ }^{\text {a }}$ Department of Chemistry, Andong National University, Andong 760-749, Republic of Korea, and ${ }^{\mathbf{b}}$ Research Institute of Natural Science, Gyeongsang National University, Chinju 660-701, Republic of Korea
Correspondence e-mail: jhchoi@andong.ac.kr

Received 23 August 2007; accepted 1 October 2007

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.051 ; w R$ factor $=0.102 ;$ data-to-parameter ratio $=17.3$.

In the title compound, $\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{4}\right)\right]$, the $\mathrm{Cu}^{\text {II }}$ ion has a tetragonally distorted octahedral environment, with the four N atoms of the macrocyclic ligand in equatorial positions and the O atoms of two perchlorate groups in axial positions. The $\mathrm{Cu}^{\mathrm{II}}$ ion is situated on an inversion centre. The macrocyclic ligand adopts its most stable trans-III conformation. The long axial $\mathrm{Cu}-\mathrm{O}$ bond is the result of the JahnTeller effect. The crystal structure is stabilized by intramolecular hydrogen bonds between secondary $\mathrm{N}-\mathrm{H}$ and the O atoms of the perchlorate groups.

Related literature

For related literature, see: Bakaj \& Zimmer (1999); Choi et al. (1996); Choi, Clegg et al. (2006); Choi, Suzuki \& Kaizaki (2006); Kang et al. (1991); Karunakaran et al. (1999); Liang \& Sadler (2004); Meyer et al. (1998); Nakamoto (1997).

Experimental

Crystal data

$\left[\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}\left(\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N}_{4}\right)\right]$
$M_{r}=599.00$
Monoclinic, $C 2 / c$
$V=2571.5(3) \AA^{3}$
$Z=4$
$a=18.8782$ (12) \AA
Mo $K \alpha$ radiation
$b=8.0923$ (5) A
$\mu=1.11 \mathrm{~mm}^{-1}$
$c=16.8906$ (11) A
$T=173$ (2) K
$\beta=94.741$ (1) ${ }^{\circ}$

Data collection

Bruker SMART CCD area-detector
7765 measured reflections 2914 independent reflections

2627 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.026$
Absorption correction: multi-scan (SADABS; Sheldrick, 1999)
$T_{\min }=0.222, T_{\max }=0.288$
(expected range $=0.617-0.801)$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.103$
H atoms treated by a mixture of independent and constrained
$S=1.26$
2914 reflections
168 parameters
refinement
$\Delta \rho_{\max }=0.52 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-1.02$ e \AA^{-3}

Table 1
Selected geometric parameters ($\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{N} 2$	$2.005(2)$	$\mathrm{Cu} 1-\mathrm{O} 4$	$2.623(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.048(2)$		
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1$	$85.04(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 4$	$84.11(9)$
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 4$	$86.65(9)$		

Table 2
Hydrogen-bond geometry ($\AA \AA^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots O1	$0.85(3)$	$2.28(3)$	$3.110(4)$	$166(2)$
N2-H2 $\cdots \mathrm{OB}^{\mathrm{i}}$	$0.77(3)$	$2.34(3)$	$3.084(4)$	$162(3)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Data collection: SMART (Bruker, 2000); cell refinement: SMART; data reduction: SAINT (Bruker, 2000); program(s) used to solve structure: SHELXS97 (Sheldrick, 1990); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2000); software used to prepare material for publication: SHELXTL.

This work was supported by a Korean Research Foundation Grant, funded by the Korean Government (MOEHRD, Basic Research Promotion Fund) (grant No. KRF-2005-013C00027).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AV3109).

References

Bakaj, M. \& Zimmer, M. (1999). J. Mol. Struct. 508, 59-72.
Bruker (2000). SMART, SAINT and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Choi, J.-H., Clegg, W., Harrington, R. W., Yoon, H.-M. \& Hong, Y. P. (2006). Acta Cryst. E62, o644-o646.
Choi, J.-H., Suzuki, T. \& Kaizaki, S. (2006). Acta Cryst. E62, m2383-m2385.

metal-organic compounds

Choi, K.-Y., Kim, J. C., Jensen, W. P., Suh, I.-H. \& Choi, S.-S. (1996). Acta Cryst. C52, 2166-2168
Kang, S. G., Kweon, J. K. \& Jung, S. K. (1991). Bull. Korean Chem. Soc. 12, 483-487.
Karunakaran, C., Thomas, K. R. J., Shunmugasundaram, A. \& Murugesan, R. (1999). J. Chem. Crystallogr. 29, 413-420.

Liang, X. \& Sadler, P. (2004). Chem. Soc. Rev. 33, 246-266.

Meyer, M., Dahaoui-Gindrey, V., Lecomte, C. \& Guilard, R. (1998). Coord. Chem. Rev. 178-180, 1313-1405.
Nakamoto, K. (1997). Infrared and Raman Spectra of Inorganic and Coordination Compounds, Part B, 5th ed. New York: John Wiley \& Sons.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXL97. University of Göttingen, Germany.
Sheldrick, G. M. (1999). SADABS. University of Göttingen, Germany.

supplementary materials

(5,16-Dimethyl-2,6,13,17-tetraazatricyclo[14.4.0 $\left.{ }^{1,18} .0^{7,12}\right]$ docosane- $\kappa^{4} N$)bis(perchlorato$\kappa O)$ copper(II)

J.-H. Choi, K. S. Ryoo and K.-M. Park

Comment

Marcrocyclic complexes are involved in diverse application fields such as catalysis, enzyme mimics, chemical sensors, purification of waste water, selective metal ions recovery, pharmacology and therapy (Meyer et al., 1998, and references therein). Recently, metal-containing complexes of 14 -membered cyclam and its derivatives have received a great deal of attention due to their highly potent and selective anti-HIV activity by specifically blocking the co-receptor CXCR4. It is found that the transition metal complexation to the cyclam ligands shows various antiviral activity in comparison to the marcrocycles alone (Liang \& Sadler, 2004).

There are five configurational trans isomers of metal-cyclam complexes, which differ in the chirality of the N atoms. The configurations that are symmetrical about the diagonal also can fold to form cis isomers. The substitution on the ring of cyclam derivatives has a very important effect both on the chemical and the structural properties of complexes containing the macrocyclic ligands (Bakaj \& Zimmer, 1999).

The crystal structures of copper(II) complexes containing ligand 5,16-dimethyl-2,6,13,17tetraazatricyclo($14,4,0^{1.18}, 0^{7.12}$)docosane (L) have been reported previously (Choi et al., 1996; Choi, Suzuki \& Kaizaki, 2006). The constrained ligand \mathbf{L} containing two cyclohexane rings and methyl groups on the carbon atoms has often shown different coordination behaviors from those of the transition metal complexes with the cyclam.

The perchlorate ion, $\mathrm{ClO}_{4}{ }^{-}$also can coordinate to the transition metal ions as monodentate, chelating bidentate, and bridging bidentate ligand (Nakamoto, 1997).

The configuration of the macrocyclic ligand and orientation of the $\mathrm{N}-\mathrm{H}$ bonds in the metal complexes are important factors for co-receptor recognition. Therefore, the understanding of binding affinity and configuration between perchlorato group and copper(II)-constrained cyclam has become extremely important in the improved design and development of new highly effective anti-HIV drugs that specially target alternative events in the HIV replicative cycle.

In this communication, we report the structure of the copper(II) complex, (I), with the 14-membered macrocycle (L) and perchlorato groups in order to determine the coordination mode of perchlorato group and the macrocyclic ring conformation.

The selected bond lengths and angles are listed in Table 1. A perspective drawing of the structure together with the atomic labeling is depicted in Fig. 1.

The coordination geometry around the copper(II) ion reveals a tetragonally distorted coordination environment with four N atoms from the macrocycle and two O atoms atoms of the perchlorato groups. The copper ion is situated on the centre of inversion. Two methyl groups on the six-membered chelate rings are anti with respect to the N_{4} plane. As usually observed, five-membered chelate rings adopt a gauche, and six-membered rings are in the chair conformations. The bond

supplementary materials

angles of five- and six-membered chelate rings around the copper(II) are the 85.04 (9) and 94.96 (9$)^{\circ}$, respectively. The $\mathrm{C}-\mathrm{N}$ and $\mathrm{C}-\mathrm{C}$ distances in macrocyclic molecule are typical of macrocyclic tetramine complexes, 1.490 (3)-1.500 (3) \AA and 1.517 (4)-1.533 (4) \AA, respectively. The $\mathrm{C}-\mathrm{N}-\mathrm{C}$ and $\mathrm{C}-\mathrm{C}-\mathrm{N}$ angles are also typical (Choi, Clegg et al., 2006). The equatorial $\mathrm{Cu}-\mathrm{N} 1[2.048(2) \AA \AA]$ and $\mathrm{Cu}-\mathrm{N} 2[2.005(2) \AA$] bond distances are slightly different due to steric effect of the methyl group attached to the C 9 , and can be compared to corresponding bond lengths in other tetragonally elongated octahedral copper(II) complexes. However, the average bond length [2.027 \AA] of $\mathrm{Cu}-\mathrm{N}$ is in good agreement with those [2.028 \AA and $2.025 \AA$] found in $\left[\mathrm{Cu}(L)\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \mathrm{Cl}_{2}$ and $\left[\mathrm{Cu}(L)\left(\mathrm{ONO}_{2}\right)_{2}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$, respectively (Choi et al., 1996; Choi, Suzuki \& Kaizaki, 2006). In general, the $\mathrm{Cu}(\mathrm{II})$-ligand bonds in the range of 2.5 and $2.9 \AA$ may be considered as semi-coordinated bond (Karunakaran et al., 1999). The Cu1-O4 bond length of 2.623 (2) \AA is the result of the Jahn-Teller effect. The $\mathrm{Cl}-\mathrm{O}$ bond lengths in the perchlorate anion are in the range 1.419 (2)-1.442 (3) \AA. The longer $\mathrm{Cl} 1-\mathrm{O} 4$ bond reflects that the O atom of perchlorato group is coordinated to the copper atom. The $\mathrm{Cl} 1-\mathrm{O} 1$ and $\mathrm{Cl} 1-\mathrm{O} 3$ bonds are slightly longer than $\mathrm{Cl} 1-\mathrm{O} 2$ bond, and the $\mathrm{O}-\mathrm{Cl}-\mathrm{O}$ angle deviating from the ideal value of 109° involves the O 1 and O 3 atoms linked to the cation by hydrogen bonds $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 1$ and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 3 \mathrm{~A}$. Thus the complex is stabilized by formation of the intramolecular hydrogen bond between the non-coordinated oxygen O 1 and O 3 of the perchlorato ligand and the secondary NH group of the macrocyclic ligand (Table 2).

Experimental

The macrocyclicligand 5,16-dimethyl-2,6,13,17-tetraazatricyclo $\left[14,4,0^{1.18}, 0^{7.12}\right]$ docosane (L) was prepared according to the literature method (Kang et al., 1991). A methanol suspension of $\mathrm{Cu}(\mathrm{OAc}) \cdot \mathrm{H}_{2} \mathrm{O}(0.95 \mathrm{~g}, 2.10 \mathrm{mmol})$ and the macrocyclic ligand $(L)(1.0 \mathrm{~g}, 3 \mathrm{mmol})$ was heated to reflux for 30 min . The suspension mixture is refluxed for 30 min at $80^{\circ} \mathrm{C}$ and cooled to room temperature. The $\mathrm{HClO}_{4}(60 \%, 0.66 \mathrm{ml})$ is added the reaction mixture and the solution is stored in the refrigerator. The product was filtered and air-dried. Recrystallization of the material from hot acetonitrile-water ($1: 2 \mathrm{v} / \mathrm{v}$) mixture solution gave reddish violet crystals that were suitable for crystallographic analysis. Analysis calculated for $\mathrm{C}_{20} \mathrm{H}_{48} \mathrm{Cl}_{2} \mathrm{CuN}_{4} \mathrm{O}_{8}$: C, 40.10; H, 6.73; N, 9.35\%; found: C, 40.15; H, 6.94; N, 9.31\%.

Refinement

The hydrogen atoms (H 1 and H 2) attached to nitrogen atoms were located in difference electron density maps, and refined isotropically. All the other hydrogen atoms were included in calculated positions and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.96-0.98 \AA$ and with $U_{\mathrm{iso}}(\mathrm{H})=1.2\left(1.5\right.$ for methyl groups) times $U_{\text {eq }}$ (parent atom).

Figures

Fig. 1. A perspective view (50% probability level) of complex (I) with the atom-numbering scheme. Dashed lines indicate intramolecular hydrogen bonds.

(5,16-Dimethyl-2,6,13,17-tetraazatricyclo[14.4.0 $\left.{ }^{1,18} .0^{7,12}\right]$ docosane- ${ }^{4} N$)bis(perchlorato-кO)copper(II)

Crystal data
$\left[\mathrm{Cu}_{\left.\left(\mathrm{ClO}_{4}\right) 2\left(\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{~N} 4\right)\right]}\right.$
$M_{r}=599.00$
Monoclinic, C2/c
Hall symbol: -C 2yc
$a=18.8782$ (12) \AA
$b=8.0923$ (5) \AA
$c=16.8906(11) \AA$
$\beta=94.7410(10)^{\circ}$
$V=2571.5$ (3) \AA^{3}
$Z=4$
$F_{000}=1260$
$D_{\mathrm{x}}=1.547 \mathrm{Mg} \mathrm{m}^{-3}$
Mo Ka radiation
$\lambda=0.71073 \AA$
Cell parameters from 4468 reflections
$\theta=2.2-28.2^{\circ}$
$\mu=1.11 \mathrm{~mm}^{-1}$
$T=173$ (2) K
Block, red-violet
$0.40 \times 0.30 \times 0.20 \mathrm{~mm}$

Data collection

Bruker SMART CCD area-detector
diffractometer
Radiation source: fine-focus sealed tube
Monochromator: graphite
$T=173(2) \mathrm{K}$
φ and ω scans
Absorption correction: multi-scan
(SADABS; Sheldrick, 1999)
$T_{\text {min }}=0.222, T_{\text {max }}=0.288$
7765 measured reflections
2914 independent reflections
2627 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.026$
$\theta_{\text {max }}=27.5^{\circ}$
$\theta_{\min }=2.2^{\circ}$
$h=-24 \rightarrow 24$
$k=-9 \rightarrow 10$
$l=-21 \rightarrow 20$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.051$
$w R\left(F^{2}\right)=0.103$
$S=1.26$
2914 reflections
168 parameters
Primary atom site location: structure-invariant direct methods

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0275 P)^{2}+8.4134 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.001$
$\Delta \rho_{\max }=0.52 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.02$ e \AA^{-3}
Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.

Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Cu 1	0.5000	0.5000	0.5000	0.01430 (13)
Cl1	0.59889 (4)	0.27519 (9)	0.36069 (5)	0.02685 (18)
O1	0.66514 (14)	0.3277 (4)	0.4016 (2)	0.0628 (9)
O2	0.60819 (15)	0.1267 (3)	0.31806 (16)	0.0448 (7)
O3	0.57461 (17)	0.4046 (3)	0.30745 (16)	0.0507 (7)
O4	0.54793 (14)	0.2534 (3)	0.41891 (15)	0.0410 (6)
N1	0.60523 (12)	0.5385 (3)	0.53479 (14)	0.0155 (5)
H1	0.6243 (17)	0.470 (4)	0.5051 (19)	0.020 (8)*
N2	0.50238 (12)	0.3441 (3)	0.59248 (14)	0.0158 (5)
H2	0.4875 (16)	0.396 (4)	0.6259 (18)	0.013 (8)*
C1	0.61957 (14)	0.4670 (3)	0.61637 (16)	0.0176 (5)
H1A	0.6009	0.5431	0.6547	0.021*
C2	0.69850 (15)	0.4392 (4)	0.63986 (18)	0.0234 (6)
H2A	0.7230	0.5446	0.6414	0.028*
H2B	0.7185	0.3707	0.6002	0.028*
C3	0.71017 (15)	0.3558 (4)	0.72101 (18)	0.0240 (6)
H3A	0.7604	0.3339	0.7330	0.029*
H3B	0.6947	0.4291	0.7616	0.029*
C4	0.66895 (16)	0.1946 (4)	0.72184 (18)	0.0244 (6)
H4A	0.6752	0.1463	0.7745	0.029*
H4B	0.6877	0.1176	0.6848	0.029*
C5	0.58952 (15)	0.2218 (4)	0.69897 (17)	0.0207 (6)
H5A	0.5651	0.1163	0.6975	0.025*
H5B	0.5696	0.2903	0.7387	0.025*
C6	0.57805 (14)	0.3055 (3)	0.61764 (16)	0.0160 (5)
H6	0.5959	0.2312	0.5780	0.019*
C7	0.45702 (15)	0.1938 (3)	0.58195 (17)	0.0198 (6)
H7A	0.4616	0.1293	0.6305	0.024*
H7B	0.4737	0.1264	0.5398	0.024*
C8	0.37895 (15)	0.2367 (4)	0.56167 (17)	0.0219 (6)
H8A	0.3656	0.3212	0.5984	0.026*
H8B	0.3507	0.1393	0.5704	0.026*
C9	0.35957 (15)	0.2981 (4)	0.47688 (17)	0.0219 (6)

sup-4

H9				
C10	0.3081	0.3170	0.4714	0.026^{*}
H10A	$0.37587(19)$	$0.1718(4)$	$0.41449(19)$	$0.0320(7)$
H10B	0.3628	0.2158	0.3625	0.048^{*}
H10C	0.3493	0.0727	0.4220	0.048^{*}
	0.4258	0.1471	0.4195	0.048^{*}

Atomic displacement parameters $\left(A^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	$0.0130(2)$	$0.0137(2)$	$0.0158(2)$	$-0.00162(19)$	$-0.00138(16)$	$0.00281(19)$
C11	$0.0326(4)$	$0.0214(4)$	$0.0281(4)$	$0.0029(3)$	$0.0118(3)$	$-0.0031(3)$
O1	$0.0306(14)$	$0.081(2)$	$0.077(2)$	$0.0053(15)$	$0.0024(14)$	$-0.0350(19)$
O2	$0.0638(18)$	$0.0272(13)$	$0.0468(16)$	$0.0020(12)$	$0.0253(13)$	$-0.0105(11)$
O3	$0.083(2)$	$0.0344(15)$	$0.0368(15)$	$0.0139(14)$	$0.0160(14)$	$0.0071(12)$
O4	$0.0563(16)$	$0.0321(13)$	$0.0384(14)$	$-0.0093(12)$	$0.0264(12)$	$-0.0074(11)$
N1	$0.0175(11)$	$0.0126(11)$	$0.0162(11)$	$-0.0016(9)$	$-0.0004(9)$	$0.0008(9)$
N2	$0.0147(11)$	$0.0144(11)$	$0.0181(12)$	$0.0006(9)$	$0.0012(9)$	$0.0003(9)$
C1	$0.0196(13)$	$0.0152(14)$	$0.0176(13)$	$-0.0007(10)$	$-0.0002(10)$	$0.0015(10)$
C2	$0.0156(13)$	$0.0272(15)$	$0.0263(15)$	$-0.0019(12)$	$-0.0042(11)$	$0.0046(12)$
C3	$0.0200(14)$	$0.0283(16)$	$0.0224(15)$	$0.0020(12)$	$-0.0055(11)$	$0.0033(12)$
C4	$0.0244(15)$	$0.0251(15)$	$0.0224(15)$	$0.0040(12)$	$-0.0055(12)$	$0.0040(12)$
C5	$0.0219(14)$	$0.0198(14)$	$0.0200(14)$	$-0.0008(12)$	$-0.0009(11)$	$0.0038(11)$
C6	$0.0151(12)$	$0.0150(13)$	$0.0177(13)$	$0.0022(10)$	$-0.0002(10)$	$0.0011(10)$
C7	$0.0222(14)$	$0.0135(13)$	$0.0233(14)$	$-0.0022(11)$	$-0.0004(11)$	$0.0030(11)$
C8	$0.0198(14)$	$0.0221(15)$	$0.0234(15)$	$-0.0068(11)$	$-0.0014(11)$	$0.0068(12)$
C9	$0.0175(13)$	$0.0216(14)$	$0.0259(15)$	$-0.0055(11)$	$-0.0025(11)$	$0.0056(12)$
C10	$0.045(2)$	$0.0202(15)$	$0.0292(17)$	$-0.0070(14)$	$-0.0072(14)$	$-0.0012(13)$

Geometric parameters (\AA, ${ }^{\circ}$)

$\mathrm{Cu} 1-\mathrm{N} 2$	$2.005(2)$
$\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	$2.005(2)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.048(2)$
$\mathrm{Cu} 1-\mathrm{N} 1^{\mathrm{i}}$	$2.048(2)$
$\mathrm{Cu} 1-\mathrm{O} 4$	$2.623(2)$
$\mathrm{Cl} 1-\mathrm{O} 2$	$1.419(2)$
$\mathrm{Cl} 1-\mathrm{O} 3$	$1.431(3)$
$\mathrm{Cl} 1-\mathrm{O} 1$	$1.442(3)$
$\mathrm{Cl} 1-\mathrm{O} 4$	$1.442(2)$
$\mathrm{N} 1-\mathrm{C} 1$	$1.499(3)$
$\mathrm{N} 1-\mathrm{C} 9$	$1.500(3)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.85(3)$
$\mathrm{N} 2-\mathrm{C} 6$	$1.489(3)$
$\mathrm{N} 2-\mathrm{C} 7$	$1.490(3)$
$\mathrm{N} 2-\mathrm{H} 2$	$0.77(3)$
$\mathrm{C} 1-\mathrm{C} 6$	$1.525(4)$
$\mathrm{C} 1-\mathrm{C} 2$	$1.526(4)$
$\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	0.9800

C3-H3A	0.9700
C3-H3B	0.9700
C4-C5	1.533 (4)
$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9700
C4-H4B	0.9700
C5-C6	1.531 (4)
C5-H5A	0.9700
C5-H5B	0.9700
C6-H6	0.9800
C7-C8	1.525 (4)
C7-H7A	0.9700
C7-H7B	0.9700
C8-C9	1.531 (4)
C8-H8A	0.9700
C8-H8B	0.9700
C9-N1 ${ }^{\text {i }}$	1.500 (3)
C9-C10	1.517 (4)
C9-H9	0.9800

C2-C3	1.528 (4)	C10-H10A	0.9600
C2-H2A	0.9700	C10-H10B	0.9600
C2-H2B	0.9700	C10-H10C	0.9600
C3-C4	1.519 (4)		
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 2^{\mathrm{i}}$	180.000 (1)	C2-C3-H3B	109.5
N2-Cu1-N1	85.04 (9)	H3A-C3-H3B	108.1
$\mathrm{N} 2{ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 1$	94.96 (9)	C3-C4-C5	111.5 (2)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	94.96 (9)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	85.04 (9)	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	109.3
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 1^{\text {i }}$	180.00 (4)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	109.3
N2-Cu1-O4	86.65 (9)	C5-C4-H4B	109.3
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu}-\mathrm{O} 4$	93.35 (9)	H4A-C4-H4B	108.0
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 4$	84.11 (9)	C6-C5-C4	110.6 (2)
$\mathrm{N} 1^{\text {i }}-\mathrm{Cu}-\mathrm{O} 4$	95.89 (9)	C6-C5-H5A	109.5
$\mathrm{O} 2-\mathrm{Cl1}-\mathrm{O} 3$	110.32 (16)	C4-C5-H5A	109.5
$\mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 1$	110.74 (17)	C6-C5-H5B	109.5
$\mathrm{O} 3-\mathrm{Cl1}-\mathrm{O} 1$	107.8 (2)	C4-C5-H5B	109.5
O2-Cl1-O4	111.10 (15)	H5A-C5-H5B	108.1
$\mathrm{O} 3-\mathrm{Cl1}-\mathrm{O} 4$	108.71 (17)	N2-C6-C1	107.4 (2)
$\mathrm{O} 1-\mathrm{Cl1}-\mathrm{O} 4$	108.06 (18)	N2-C6-C5	114.2 (2)
$\mathrm{Cl1}-\mathrm{O} 4-\mathrm{Cu} 1$	122.78 (14)	C1-C6-C5	110.9 (2)
C1-N1-C9 ${ }^{\text {i }}$	114.4 (2)	N2-C6-H6	108.1
C1-N1-Cu1	107.59 (16)	C1-C6-H6	108.1
C9 ${ }^{\text {i }}$ - $1-\mathrm{Cu} 1$	121.75 (17)	C5-C6-H6	108.1
C1-N1-H1	104 (2)	N2-C7-C8	112.1 (2)
C9 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{H} 1$	107 (2)	N2-C7-H7A	109.2
$\mathrm{Cu}-\mathrm{N} 1-\mathrm{H} 1$	100 (2)	C8-C7-H7A	109.2
C6-N2-C7	113.0 (2)	N2-C7-H7B	109.2
C6-N2-Cu1	108.26 (16)	C8-C7-H7B	109.2
C7-N2-Cu1	116.42 (17)	H7A-C7-H7B	107.9
C6-N2-H2	108 (2)	C7- $\mathrm{C} 8-\mathrm{C} 9$	115.8 (2)
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{H} 2$	107 (2)	C7-C8-H8A	108.3
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{H} 2$	104 (2)	C9-C8-H8A	108.3
N1-C1-C6	106.9 (2)	C7-C8-H8B	108.3
N1-C1-C2	113.2 (2)	C9-C8-H8B	108.3
C6-C1-C2	111.2 (2)	H8A-C8-H8B	107.4
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.5	$\mathrm{N} 1^{\text {i }}$ - $\mathrm{C} 9-\mathrm{C} 10$	112.6 (2)
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.5	N1 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{C} 8$	109.5 (2)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	108.5	C10-C9-C8	112.6 (3)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	111.3 (2)	N1 ${ }^{\text {i }}$ - $\mathrm{C} 9-\mathrm{H} 9$	107.2
C1-C2-H2A	109.4	C10-C9-H9	107.2
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	109.4	C8-C9-H9	107.2
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4	C9-C10-H10A	109.5
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	109.4	C9-C10-H10B	109.5
$\mathrm{H} 2 \mathrm{~A}-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~B}$	108.0	H10A-C10-H10B	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	110.6 (2)	C9-C10-H10C	109.5

supplementary materials

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~A}$	109.5
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{H} 3 \mathrm{~B}$	109.5
$\mathrm{O} 2-\mathrm{Cl1}-\mathrm{O} 4-\mathrm{Cu} 1$	-171.89 (17)
$\mathrm{O} 3-\mathrm{Cl1}-\mathrm{O} 4-\mathrm{Cu} 1$	-50.3 (2)
$\mathrm{O} 1-\mathrm{Cl1}-\mathrm{O} 4-\mathrm{Cu} 1$	66.4 (2)
$\mathrm{N} 2-\mathrm{Cu}-\mathrm{O} 4-\mathrm{Cl} 1$	-142.5 (2)
$\mathrm{N} 2{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{Cl} 1$	37.5 (2)
N1-Cu1-O4-Cl1	-57.18 (19)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{O} 4-\mathrm{Cl1}$	122.82 (19)
$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	-13.38 (17)
$\mathrm{N} 2 \mathrm{i}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	166.62 (17)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1$	-100.52 (17)
N2-Cu1-N1-C9 ${ }^{\text {i }}$	-148.3 (2)
$\mathrm{N} 2{ }^{\mathrm{i}}-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 9^{\mathrm{i}}$	31.7 (2)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 9^{\text {i }}$	124.6 (2)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	-16.45 (17)
N1 ${ }^{\text {i }}$ - $\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	163.55 (17)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6$	67.92 (18)
$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 7$	-145.1 (2)
$\mathrm{N} 1{ }^{\text {i }}-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 7$	34.9 (2)
$\mathrm{O} 4-\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 7$	-60.68 (19)
$\mathrm{C} 9^{\mathrm{i}}-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6$	178.3 (2)
Cu1-N1-C1-C6	39.7 (2)
C9 ${ }^{\text {i }}$ - $\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	-58.9 (3)

$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{H} 10 \mathrm{~B}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{C}$	109.5
$\mathrm{Cu} 1-\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2$	$162.54(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-176.2(2)$
$\mathrm{C} 6-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$-55.9(3)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$55.9(3)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$-56.3(3)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$56.4(3)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$173.3(2)$
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 1$	$42.8(2)$
$\mathrm{C} 7-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$-63.3(3)$
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 6-\mathrm{C} 5$	$166.21(19)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	$-54.8(3)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{N} 2$	$-178.9(2)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$179.8(2)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	$55.7(3)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 2$	$-177.1(2)$
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 1$	$-55.7(3)$
$\mathrm{C} 6-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$176.1(2)$
$\mathrm{Cu} 1-\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8$	$-57.6(3)$
$\mathrm{N} 2-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9$	$74.2(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{N} 1 \mathrm{i}$	$-65.9(3)$
$\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10$	$60.2(3)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 1$	$0.85(3)$	$2.28(3)$	$3.110(4)$	$166(2)$
$\mathrm{N} 2 — \mathrm{H} 2 \cdots \mathrm{O}^{\mathrm{i}}$	$0.77(3)$	$2.34(3)$	$3.084(4)$	$162(3)$

Symmetry codes: (i) $-x+1,-y+1,-z+1$.

supplementary materials

Fig. 1

